Abstract

A preliminary design of fusion–fission hybrid energy reactor (FFHER) has been proposed by Institute of Nuclear Physics and Chemistry based on current fusion science and well-developed fission technology. In FFHER, shield blocks provide nuclear shielding and thermal shielding for internal and external blanket components. The hybrid of fusion core and fission blanket makes the spectra rather complex. Therefore, it is necessary to make detail shielding design and carry out radiation analysis according to the blanket structure and material property. In this study, a shielding design of combining several different material shield blocks has been proposed. The shielding analysis is performed by Monte Carlo (MC) method. For the radiation deep-penetration problem, the flux and statistical relative error of forward MC estimate are applied to get an optimal weight window for global variance reduction (GVR). The spatial distribution of neutron and gamma flux have been assessed along the shield block depth. Power deposited and dose rate distributions have also been simulated and analysed. Neutron irradiation damage has been studied to evaluate the material damage. Based on the configuration analysis, nuclear analysis and GVR method, an optimal FFHER blanket shielding design has been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.