Abstract

Magnesium-based materials show great potential for producing biodegradable stents, but their high corrosion rates are a roadblock.This study investigates whether ultrasound melt treatment can change the corrosion response of an extruded AZ91D-1.0%Ca (wt.%) in Earle's Balanced Salt Solution by tailoring the intermetallics' morphology in the as-extruded state.The results showed that the wires from ultrasound-treated ingots corroded faster than non-treated ones in immersion for up to 6 hours. This trend shifted for longer periods, and ultrasound-treated material showed lower corrosion rates and uniform corrosion, while the non-treated material displayed localized corrosion signs. Tensile testing of the wires demonstrated that immersion in EBSS lowered the tensile strength and elongation at fracture due to material degradation, regardless of the processing route. Nonetheless, this decline was sharper in the non-treated material.These findings suggest that ultrasound melt processing can be a promising method for improving the corrosion resistance of magnesium-based materials, paving the way for their use in manufacturing biodegradable stents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.