Abstract
Here, we describe a nanoscale reactor strategy with a topical application in the therapeutic decontamination of reactive organophosphates (OPs) as chemical threat agents. It involves functionalization of poly(amidoamine) dendrimer through a combination of its partial PEG shielding and exhaustive conjugation with an OP-reactive α-nucleophile moiety at its peripheral branches. We prepared a 16-member library composed of two α-nucleophile classes (oxime, hydroxamic acid), each varying in its reactor valency (43-176 reactive units per nanoparticle), and linker framework for α-nucleophile tethering. Their mechanism for OP inactivation occurred via nucleophilic catalysis as verified against P-O and P-S bonded OPs including paraoxon-ethyl (POX), malaoxon, and omethoate by 1H NMR spectroscopy. Screening their reactivity for POX inactivation was performed under pH- and temperature-controlled conditions, which resulted in identifying 13 conjugates, each showing shorter POX half-life up to 2 times as compared to a reference Dekon 139 at pH 10.5, 37 °C. Of these, 10 conjugates were further confirmed for greater efficacy in POX decontamination experiments performed in two skin models, porcine skin and an artificial human microtissue. Finally, a few lead conjugates were selected and demonstrated for their biocompatibility in vitro as evident with lack of skin absorption, no inhibition of acetylcholinesterase (AChE), and no cytotoxicity in human neuroblastoma cells. In summary, this study presents a novel nanoreactor library, its screening methods, and identification of potent lead conjugates with potential for therapeutic OP decontamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.