Abstract

Security of MPSoCs is an emerging area of concern in embedded systems. Security is jeopardized by code injection attacks, which are the most common types of software attacks. Previous attempts to detect code injection in MPSoCs have been burdened with significant performance overheads. In this work, we present a hardware/software methodology to detect code injection attacks in MPSoCs. SHIELD instruments the software programs running on application processors in the MPSoC and also extracts control flow and basic block execution time information for runtime checking. We employ a dedicated security processor (monitor processor) to supervise the application processors on the MPSoC. Custom hardware is designed and used in the monitor and application processors. The monitor processor uses the custom hardware to rapidly analyze information communicated to it from the application processors at runtime. We have implemented SHIELD on a commercial extensible processor (Xtensa LX2) and tested it on a multiprocessor JPEG encoder program. In addition to code injection attacks, the system is also able to detect 83% of bit flips errors in the control flow instructions. The experiments show that SHIELD produces systems with runtime which is at least 9 times faster than the previous solution. SHIELD incurs a runtime (clock cycles) performance overhead of only 6.6% and an area overhead of 26.9%, when compared to a non-secure system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.