Abstract

Background: Chronic heart failure (CHF) is a major public health problem with high mortality and morbidity worldwide. Shexiang Tongxin Dropping Pill (STDP) is a widely used traditional Chinese medicine preparation for coronary heart disease and growing evidence proves that STDP exerts beneficial effects on CHF in the clinic. However, the molecular mechanism of the therapeutic effects of STDP on CHF remains largely unknown. Objective: This study aimed to elucidate the mechanism of action of STDP against CHF by integrating network pharmacology analysis and whole-transcriptome sequencing. Methods: First, the mouse model of CHF was established by the transverse aortic constriction (TAC) surgery, and the efficacy of STDP against CHF was evaluated by assessing the alterations in cardiac function, myocardial fibrosis, and cardiomyocyte hypertrophy with echocardiography, Masson’s trichrome staining, and wheat germ agglutinin staining. Next, a CHF disease network was constructed by integrating cardiovascular disease-related genes and the transcriptome sequencing data, which was used to explore the underlying mechanism of action of STDP. Then, the key targets involved in the effects of STDP on CHF were determined by network analysis algorithms, and pathway enrichment analysis was performed to these key genes. Finally, important targets in critical pathway were verified in vivo. Results: STDP administration obviously improved cardiac function, relieved cardiomyocyte hypertrophy, and ameliorated myocardial fibrosis in CHF mice. Moreover, STDP significantly reversed the imbalanced genes that belong to the disease network of CHF in mice with TAC, and the number of genes with the reverse effect was 395. Pathway analysis of the crucial genes with recovery efficiency revealed that pathways related to fibrosis and energy metabolism were highly enriched, while TGF-β pathway and ERK/MAPK pathway were predicted to be significantly affected. Consistently, validation experiments confirmed that inhibiting ERK/MAPK and TGF-β signaling pathways via reduction of the phosphorylation level of Smad3 and ERK1/2 is the important mechanism of STDP against CHF. Conclusion: Our data demonstrated that STDP can recover the imbalanced CHF network disturbed by the modeling of TAC through the multi-target and multi-pathway manner in mice, and the mechanisms are mainly related to inhibition of ERK/MAPK and TGF-β signaling pathways.

Highlights

  • Chronic heart failure (CHF) is a clinical syndrome, caused by cardiac structural and functional abnormalities, leading to an imbalance between cardiac output and the metabolic demands of body (Ahmad et al, 2012)

  • In line with this, using a mouse model of pressure overload-induced heart failure by transverse aortic constriction (TAC), we discovered that TGF-β pathway was significantly deregulated and the phosphorylation of Smad3 was almost completely blocked after Shexiang Tongxin Dropping Pill (STDP) treatment, suggesting inhibiting the TGF-β/Smad signaling is mainly involved in the anti-cardiac fibrosis effects of STDP on CHF mice

  • The present study demonstrated that the protective effects of STDP on CHF was mainly reflected by improving cardiac function, inhibiting cardiomyocyte hypertrophy, and antimyocardial fibrosis in mice

Read more

Summary

Introduction

Chronic heart failure (CHF) is a clinical syndrome, caused by cardiac structural and functional abnormalities, leading to an imbalance between cardiac output and the metabolic demands of body (Ahmad et al, 2012). CHF induces a staggering burden to society with high mortality and morbidity. A prolonged treatment of these chemical drugs may cause extremely serious side effects, including hypotension and electrolyte depletion (Yancy et al, 2016), and a considerable and growing number of patients with CHF respond poorly to these drugs (Owan et al, 2006; McMurray, 2010). Chronic heart failure (CHF) is a major public health problem with high mortality and morbidity worldwide. Shexiang Tongxin Dropping Pill (STDP) is a widely used traditional Chinese medicine preparation for coronary heart disease and growing evidence proves that STDP exerts beneficial effects on CHF in the clinic. The molecular mechanism of the therapeutic effects of STDP on CHF remains largely unknown

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call