Abstract
We introduce Shennong, a Python toolbox and command-line utility for audio speech features extraction. It implements a wide range of well-established state-of-the-art algorithms: spectro-temporal filters such as Mel-Frequency Cepstral Filterbank or Predictive Linear Filters, pre-trained neural networks, pitch estimators, speaker normalization methods, and post-processing algorithms. Shennong is an open source, reliable and extensible framework built on top of the popular Kaldi speech processing library. The Python implementation makes it easy to use by non-technical users and integrates with third-party speech modeling and machine learning tools from the Python ecosystem. This paper describes the Shennong software architecture, its core components, and implemented algorithms. Then, three applications illustrate its use. We first present a benchmark of speech features extraction algorithms available in Shennong on a phone discrimination task. We then analyze the performances of a speaker normalization model as a function of the speech duration used for training. We finally compare pitch estimation algorithms on speech under various noise conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.