Abstract

BackgroundSheng-ji Hua-yu(SJHY) formula is one of the most useful Traditional Chinese medicine (TCM) in the treatment of the delayed diabetic wound. However, elucidating the related molecular biological mechanism of how the SJHY Formula affects excessive inflammation in the process of re-epithelialization of diabetic wound healing is a task urgently needed to be fulfilled. The objectives of this study is to evaluate the effect of antagonisic expression of pro−/anti-inflammatory factors on transforming growth factor-β(TGF-β) superfamily (activin and follistatin) in the process of re-epithelialization of diabetic wound healing in vivo, and to characterize the involvement of the activin/follistatin protein expression regulation, phospho-Smad (pSmad2), and Nuclear factor kappa B p50 (NF-kB) p50 in the diabetic wound healing effects of SJHY formula.MethodsSJHY Formula was prepared by pharmaceutical preparation room of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine. Diabetic wound healing activity was evaluated by circular excision wound models. Wound healing activity was examined by macroscopic evaluation. Activin/follistatin expression regulation, protein expression of pSmad2 and NF-kB p50 in skin tissue of wounds were analyzed by Real Time PCR, Western blot, immunohistochemistry and hematoxylin and eosin (H&E) staining.ResultsMacroscopic evaluation analysis showed that wound healing of diabetic mice was delayed, and SJHY Formula accelerated wound healing time of diabetic mice. Real Time PCR analysis showed higher mRNA expression of activin/follistatin in diabetic delayed wound versus the wound in normal mice. Western Blot immunoassay analysis showed reduction of activin/follistatin proteins levels by SJHY Formula treatment 15 days after injury. Immunohistochemistry investigated the reduction of pSmad2 and NF-kB p50 nuclear staining in the epidermis of diabetic SJHY versus diabetic control mice on day 15 after wounding. H&E staining revealed that SJHY Formula accelerated re-epithelialization of diabetic wound healing.ConclusionThe present study found that diabetic delayed wound healing time is closely related to the high expression level of activin/follistatin, which leads to excessive inflammation in the process of re-epithelization. SJHY Formula accelerates re-epithelialization and healing time of diabetic wounds through decreasing the high expression of activin/follistatin.Graphical abstract

Highlights

  • Sheng-ji Hua-yu(SJHY) formula is one of the most useful Traditional Chinese medicine (TCM) in the treatment of the delayed diabetic wound

  • Recent study has indicated that inflammatory phase in the process of re-epithelialization of diabetic wound healing lasts for an abnormally long time with delayed resolution, and the wound is in a state of prolonged inflammation, slow to transition to the latter two phase of wound healing [6]

  • Quantitative analysis of SJHY formula by HPLC The SJHY Formula was analyzed by liquid chromatographmass spectrometer (LC-MS) using Agilent 1200 Series analytical systems equipped with a photodiode array (PDA) detector combined with a 6130 Series ESI mass spectrometer

Read more

Summary

Introduction

Sheng-ji Hua-yu(SJHY) formula is one of the most useful Traditional Chinese medicine (TCM) in the treatment of the delayed diabetic wound. Elucidating the related molecular biological mechanism of how the SJHY Formula affects excessive inflammation in the process of re-epithelialization of diabetic wound healing is a task urgently needed to be fulfilled. The objectives of this study is to evaluate the effect of antagonisic expression of pro−/anti-inflammatory factors on transforming growth factor-β(TGF-β) superfamily (activin and follistatin) in the process of re-epithelialization of diabetic wound healing in vivo, and to characterize the involvement of the activin/ follistatin protein expression regulation, phospho-Smad (pSmad2), and Nuclear factor kappa B p50 (NF-kB) p50 in the diabetic wound healing effects of SJHY formula. Chronic inflammation of diabetic wound healing results from an excess of proinflammatory cytokines, and from an excess of anti-inflammatory and healing-associated cytokines. Activin signaling can regulate re-epithelialization, inflammation and scar formation, which play a critical regulator role in cutaneous wound healing. Follistatin and activin together compose a balanced system in wound healing processes and scar formation [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call