Abstract

AbstractTip‐enhanced Raman spectroscopy can provide molecular fingerprint information with ultrahigh spatial resolution, but the tip will be easily contaminated, thus leading to artifacts. It also remains a great challenge to establish tip‐enhanced fluorescence because of the quenching resulting from the proximity of the metal tip. Herein, we report shell‐isolated tip‐enhanced Raman and fluorescence spectroscopies by employing ultrathin shell‐isolated tips fabricated by atomic layer deposition. Such shell‐isolated tips not only show outstanding electromagnetic field enhancement in TERS but also exclude interference by contaminants, thus greatly promoting applications in solution. Tip‐enhanced fluorescence has also been achieved using these shell‐isolated tips, with enhancement factors of up to 1.7×103, consistent with theoretical simulations. Furthermore, tip‐enhanced Raman and fluorescence signals are acquired simultaneously, and their relative intensities can be manipulated by changing the shell thickness. This work opens a new avenue for ultrahigh resolution surface analysis using plasmon‐enhanced spectroscopies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.