Abstract

• Wrapping of the cores with the shell was continuously varied and characterized. • Strained, defective shell and charge transfer from the core enable activation of the basal plane. • An optimal hybrid structure led to improved activity. • The hybrids are potent catalysts towards HER, and ORR. The development of noble-metal free electrocatalysts is of high importance for clean energy conversion applications. MoS 2 has been considered as a promising low-cost catalyst for the hydrogen evolution reaction (HER), however its activity is limited by poor conductivity and low abundance of active sites. Moreover, its suitability as an effective catalyst for other reactions, in particular the oxygen reduction reaction (ORR), was hardly explored to date. Herein, we show hybrid nanostructures of shelled CuS particles with MoS 2 layers, which produces several outcomes: The MoS 2 shell is strained and defective, and charge transfer from the core to MoS 2 occurs, enabling activation of the basal plane of MoS 2 . Changing the feed ratio of the precursors led to control over morphology, such that the wrapping of the cores with the shell was continuously varied and characterized. We found an optimal hybrid structure, which provided high electrochemical active surface area and fast charge transfer kinetics, leading to improved activity not only towards HER (overpotential of 225 mV at 10 mA cm −2 ), but also for the sluggish ORR (onset potential 0.87 V vs RHE).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call