Abstract
There is a long history of constructions of nonshellable triangulations of three-dimensional (topological) balls. This paper gives a survey of these constructions, including Furch's 1924 construction using knotted curves, which also appears in Bing's 1962 survey of combinatorial approaches to the Poincare conjecture, Newman's 1926 explicit example, and M. E. Rudin's 1958 nonshellable triangulation of a tetrahedron with only 14 vertices (all on the boundary) and 41 facets. Here an (extremely simple) new example is presented: a nonshellable simplicial three-dimensional ball with only 10 vertices and 21 facets. It is further shown that shellings of simplicial 3 -balls and 4 -polytopes can ``get stuck'': simplicial 4 -polytopes are not in general ``extendably shellable.'' Our constructions imply that a Delaunay triangulation algorithm of Beichl and Sullivan, which proceeds along a shelling of a Delaunay triangulation, can get stuck in the three-dimensional version: for example, this may happen if the shelling follows a knotted curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.