Abstract
A new effective interaction PKA1 with \ensuremath{\rho}-tensor couplings for the density dependent relativistic Hartree-Fock (DDRHF) theory is presented. It is obtained by fitting selected empirical ground state and shell structure properties. It provides satisfactory descriptions of nuclear matter and the ground state properties of finite nuclei at the same quantitative level as recent DDRHF and relativistic mean field (RMF) models. Significant improvement in the single-particle spectra is also found due to the inclusion of \ensuremath{\rho}-tensor couplings. As a result, PKA1 cures a common disease of the existing DDRHF and RMF Lagrangians, namely, the artificial shells at 58 and 92, and recovers the realistic subshell closure at 64. Moreover, the proper spin-orbit splittings and well-conserved pseudospin symmetry are obtained with the new effective interaction PKA1. Due to the extra binding introduced by the \ensuremath{\rho}-tensor correlations, the balance between the nuclear attractions and the repulsions is changed, and this constitutes the physical reason for the improvement of the nuclear shell structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.