Abstract

We conduct a detailed case-study of the interstellar shell near the high-mass X-ray binary, Cygnus X-1. We present new WIYN optical spectroscopic and Chandra X-ray observations of this region, which we compare with detailed MAPPINGS III shock models, to investigate the outflow powering the shell. Our analysis places improved, physically motivated constraints on the nature of the shockwave and the interstellar medium (ISM) it is plowing through. We find that the shock is traveling at less than a few hundred km/s through a low-density ISM (< 5 cm^-3). We calculate a robust, 3 sigma upper limit to the total, time-averaged power needed to drive the shockwave and inflate the bubble, < 2 x 10^38 erg/s. We then review possible origins of the shockwave. We find that a supernova origin to the shockwave is unlikely and that the black hole jet and/or O-star wind can both be central drivers of the shockwave. We conclude that the source of the Cygnus X-1 shockwave is far from solved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.