Abstract

BackgroundCoexistence is enabled by ecological differentiation of the co-occurring species. One possible mechanism thereby is resource partitioning, where each species utilizes a distinct subset of the most limited resource. This resource partitioning is difficult to investigate using empirical research in nature, as only few species are primarily limited by solely one resource, rather than a combination of multiple factors. One exception are the shell-dwelling hermit crabs, which are known to be limited under natural conditions and in suitable habitats primarily by the availability of gastropod shells. In the present study, we used two co-occurring terrestrial hermit crab species, Coenobita rugosus and C. perlatus, to investigate how resource partitioning is realized in nature and whether it could be a driver of coexistence.ResultsField sampling of eleven separated hermit crab populations showed that the two co-occurring hermit crab species inhabit the same beach habitat but utilize a distinct subset of the shell resource. Preference experiments and principal component analysis of the shell morphometric data thereby revealed that the observed utilization patterns arise out of different intrinsic preferences towards two distinct shell shapes. While C. rugosus displayed a preference towards a short and globose shell morphology, C. perlatus showed preferences towards an elongated shell morphology with narrow aperture.ConclusionThe two terrestrial hermit crab species occur in the same habitat but have evolved different preferences towards distinct subsets of the limiting shell resource. Resource partitioning might therefore be the main driver of their ecological differentiation, which ultimately allowed these co-occurring species to coexist in their environment. As the preferred shell morphology of C. rugosus maximizes reproductive output at the expense of protection, while the preferred shell morphology of C. perlatus maximizes protection against predation at the expense of reproductive output, shell resource partitioning might reflect different strategies to respond to the same set of selective pressures occurring in beach habitats. This work offers empirical support for the competitive exclusion principle-hypothesis and demonstrates that hermit crabs are an ideal model organism to investigate resource partitioning in natural populations.

Highlights

  • Coexistence is enabled by ecological differentiation of the co-occurring species

  • Only 37.05% of the collected crabs were identified as C. rugosus, while 62.95% were C. perlatus

  • Significant differences between the mean Principal components (PC) values for each shell type are indicated by different letters behind the PC value, same letters indicate no statistical difference between the PC values of the respective shell types the two co-occurring hermit crabs C. rugosus and C. perlatus utilized different gastropod shell species

Read more

Summary

Introduction

Coexistence is enabled by ecological differentiation of the co-occurring species. One possible mechanism thereby is resource partitioning, where each species utilizes a distinct subset of the most limited resource. We used two co-occurring terrestrial hermit crab species, Coenobita rugosus and C. perlatus, to investigate how resource partitioning is realized in nature and whether it could be a driver of coexistence. According to the competitive exclusion principle, this resource partitioning, as a form of ecological differentiation between species, can thereby be the mechanism that allows co-occurring species to coexist in the same environment [7]. This coexistence can only be realized when each species uses a discrete subset of the limiting resource, which differs qualitatively from those of the co-occurring species [8, 9]. This premise for resource partitioning is described in the concept of limiting similarity, which states that there needs to be a limit to how similar two species can be to each other in order to stably coexist, rather than compete [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call