Abstract

The interacting boson model, describing collective states of even-even nuclei, is introduced as a drastic truncation of large scale shell model calculations. The shell model hamiltonian can be diagonalized by using a correspondence, or mapping, of the nucleon states in the truncated space into states obtained by coupling proton and neutron s- and d-bosons. The equivalent boson hamiltonian in a simple case is obtained and diagonalized. Eigenstates with definite proton-neutron symmetry (good F-spin) emerge for certain values of proton and neutron numbers. In general the situation is more complex but the results obtained follow closely the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.