Abstract

We have studied the reaction ( ^7Li, p) on 13C targets at E lab = 44 MeV, populating states in the oxygen isotope 19O . The experiments were performed at the Tandem Laboratory (Maier-Leibniz Laboratorium) using the high-resolution Q3D magnetic spectrometer. States were populated up to an excitation energy of 21MeV, with an overall energy resolution of 45keV. We discuss shell model states and cluster bands related to the rotational bands in the 18O -isotope, using the weak-coupling approach. Similar to 18O , the broken intrinsic reflection symmetry in these states must give rise to rotational bands as parity doublets, so two K = 3/2 bands (parities, + and - are proposed with large moments of inertia. These are discussed in terms of an underlying cluster structure, ( ^14C ⊗ n ⊗ $ \alpha$ ) . An extended molecular binding diagram is proposed which includes the 14C -cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call