Abstract

The Rayleigh-Taylor instability in its highly nonlinear, turbulent stage causes atomic-scale mixing of the shell material with the fuel in the compressed core of inertial-confinement fusion targets. The density of shell material mixed into the outer core of direct-drive plastic-shell spherical-target implosions on the 60-beam, OMEGA laser system is estimated to be 3.4(+/-1.2) g/cm(3) from time-resolved x-ray spectroscopy, charged-particle spectroscopy, and core x-ray images. The estimated fuel density, 3.6(+/-1) g/cm(3), accounts for only approximately 50% of the neutron-burn-averaged electron density, n(e)=2.2(+/-0.4)x10(24) cm(-3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.