Abstract

The Late Triassic-Early Jurassic change from aragonite- to calcite-facilitating conditions in the oceans, which was caused by a decrease of the Mg2+/Ca2+ ratio of seawater in combination with an increase of the partial pressure of carbon dioxide, also affected the shell mineralogy of epifaunal bivalves. In the “calcite sea” of the Jurassic and Cretaceous, the most diverse and abundant families of epifaunal bivalves had largely calcitic shells. Some of them, such as the Inoceramidae, acquired this shell mineralogy earlier in Earth's history but did not significantly diversify until the onset of “calcite sea” conditions. Others, however, replaced aragonite by calcite in their shell at the beginning of the Jurassic, as shown for the Ostreidae, Gryphaeidae, Pectinidae, Plicatulidae, and Buchiidae. In these families, replacement of aragonite by calcite took place in the middle and inner layer of the shell and was not associated with changes in morphology and life habit. It is therefore proposed that lower metabolic costs rather than higher resistance against dissolution or advantageous physical properties triggered the calcite expansion in their shells. This explanation fits well the observation that clades of thin-shelled bivalves were less affected by the change of seawater chemistry. Thick-shelled clades, by contrast, may suffer a severe decline in diversity until they adapt their shell mineralogy, as demonstrated by the Hippuritoida: The diversity of the Megalodontoidea, which failed to adapt their shell mineralogy to “calcite sea” conditions, dramatically decreased at the end of the Triassic, whereas their descendents became dominant carbonate producers during the Late Mesozoic after they acquired a calcitic outer shell layer in the Late Jurassic. These examples indicate that changes in the seawater chemistry and in the partial pressure of carbon dioxide are factors that influence the diversity of carbonate-secreting animals, and, as in the case of the decline of the Megalodontoidea, may contribute to mass extinctions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call