Abstract
The shell of a complex tridiagonal Toeplitz matrix is studied. Closed formulas for all quantities involved in its equation are presented. Necessary and sufficient conditions for a Toeplitz tridiagonal matrix to have shell extremal eigenvalues are given. Several, recently introduced, geometric quantities related to the shell are studied as measures of non-normality of these extremal eigenvalues of such matrices. These quantities are also proposed as measures of non-normality for the matrix itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.