Abstract

Not all encapsulation techniques are universally apt for every type of phase change material (PCM), highlighting the imperative for methodological precision. This study addresses the challenges of microencapsulated PCM (MEPCM) arising from the immiscible pairing of α-Al2O3 nanoparticles with Sn microparticles. The high-speed impact blending (HIB) dry synthesis technique is employed, facilitating large-volume production of Sn@α-Al2O3 MEPCMs. The resulting MEPCMs not only seamlessly endure 100 cycles of melting-solidification but also, with the strategic incorporation of a glass frit, exhibit remarkable thermal durability, withstanding up to 1000 melting-solidification cycles. Even under ultrafast thermal fluctuations, the α-Al2O3 shell remained resilient through 100 cycles. A marked reduction in supercooling is observed, which is attributed to the formation of SnO and SnO2 nanoparticles within the α-Al2O3 crystal lattice. The atomically resolved interface dynamics between SnO2 and α-Al2O3 play a pivotal role, lowering the energy barrier for Sn nuclei formation during solidification. This affects the accelerated Sn nucleation rate, effectively suppressing supercooling. Such insights offer a deeper understanding of the interplay between nanoscale crystal lattice imperfections and their implications for energy storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.