Abstract

Scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) was used to determine the chemical distribution of semiconductor shell material around colloidal core-shell CdSe/ZnS quantum dots (QDs). EELS signals from positions around the QD indicate a well-defined shell of ZnS surrounding the CdSe core, but the distribution of the shell material is highly anisotropic. This nonuniformity may reflect the differences in chemical activity of the crystal faces of the core QD and implies a nonoptimal QD surface passivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.