Abstract

Shell corrections of finite, spherical, one-body potentials are analyzed using a smoothing procedure which properly accounts for the contribution from the particle continuum, i.e., unbound states. Since the plateau condition for the smoothed single-particle energy seldom holds, a new recipe is suggested for the definition of the shell correction. The generalized Strutinsky smoothing procedure is compared with the results of the semiclassical Wigner-Kirkwood expansion. A good agreement has been found for weakly bound nuclei in the vicinity of the proton drip line. However, some deviations remain for extremely neutron-rich systems due to the pathological behavior of the semiclassical level density around the particle threshold. {copyright} {ital 1998} {ital The American Physical Society}

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call