Abstract

Propellants based on HTPB/AP (hydroxyl-terminated polybutadiene/ammonium perchlorate) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing chemical kinetic analysis of the energetic material via differential scanning calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator. The simulations presented the experimental behavior of the aging process, showing the bending and cross-link of the binder with the volume contraction and the energetic stabilization. Thermal analysis via DSC was performed in triplicate and in 3 heating ratios (5 °C, 10 °C and 15 °C) of rocket motor with 11-year shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). The obtained activation energies were 126.67 kJ/mol (Ozawa) and 122.85 kJ/mol (Kissinger), much higher than that of the aged propellants (~ 78 kJ/mol, based on literature data), showing that the propellant has not yet aged significantly. In addition, the kinetic parameters of internal pressure of the combustion chamber in 8 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call