Abstract

Shield design is one of the most crucial tasks in the integration of a nuclear reactor power system to a manned Mars rover. A multilayered W and LiH shield is found to minimize the shield mass and satisfy the dose rate limit of 30 rem/y to the rover crew. The effect on dose rate of tungsten layers thicknesses and position within the lithium hydride shields is investigated. Due to the large cross section for the W (n,γ) reaction, secondary gammas become a significant radiation source. The man‐rated shield mass for the Mars rover vehicle is correlated to the reactor thermal power. The correlation fits to within 9% of the calculated shield mass and results in an uncertainty of <4% in the overall rover mass. The shield mass varied from 8600 kg to 20580 kg for a reactor thermal power of 100 to 1000 kWt, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.