Abstract

This paper introduces the development of ShefCE: a Cantonese-English bilingual speech corpus from L2 English speakers in Hong Kong. Bilingual parallel recording materials were chosen from TED online lectures. Script selection were carried out according to bilingual consistency (evaluated using a machine translation system) and the distribution balance of phonemes. 31 undergraduate to postgraduate students in Hong Kong aged 20–30 were recruited and recorded a 25-hour speech corpus (12 hours in Cantonese and 13 hours in English). Baseline phoneme/syllable recognition systems were trained on background data with and without the ShefCE training data. The final syllable error rate (SER) for Cantonese is 17.3% and final phoneme error rate (PER) for English is 34.5%. The automatic speech recognition performance on English showed a significant mismatch when applying L1 models on L2 data, suggesting the need for explicit accent adaptation. ShefCE and the corresponding baseline models will be made openly available for academic research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.