Abstract

This paper explores two optimization strategies; the gradient search and proportional control methods, for determining the initial sheet thickness of superplastic forming to ensure final desired part thickness. A hemispherical dome model was involved in the testing of both optimization methods. Also, a three-dimensional rectangular box model was optimized by the proportional control method. The gradient search technique is shown to be acceptable in terms of the optimized thickness obtained, but displays poor convergence rates. The proportional control approach presented is easy to be implemented, and yields not only more accurate sheet thickness, but much higher convergence speeds that makes such optimization possible on complex geometric models. [S1087-1357(00)01001-7]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.