Abstract

Bismuthene with a similar layered lattice structure belonging to group VA is regarded as a kind of novel two-dimensional material and has excellent properties such as small indirect bandgap (less than 1 eV) and unique electronic properties, etc. Based on the large magnitude of third-order nonlinear susceptibility and high carrier motility, bismuthene can be considered as a promising material for various optoelectronics, electronics, and nonlinear optics. Compared with the mass research about the few-layer bismuthene, we focus on the characteristics and nonlinear optical properties of bismuthene nanosheets in this work. Bismuthene nanosheets present high modulation depth over 7.7%. The sheet-structured bismuthene as saturable absorbers (SAs) is a technically important issue in laser technology. Here, for the first time, it is demonstrated that bismuthene nanosheets can be served as an SA to readily generate a harmonic dual-wavelength mode-locked picosecond pulse in a highly nonlinear fiber laser. A harmonic mode-locked pulse order from 1st to 20th is obtained at the pump power from 43.2 to 201.5 mW. When the pump power is greater than 408 mW, a 52th harmonic dual-wavelength pulse (corresponding to the repetition of 208 MHz) has been obtained. This study demonstrates the bismuthene saturable absorption is an intrinsic property independent from the structural dimension. Our work attests the promise of bismuthene in optical communication, optical detecting, sensor systems, and material processing, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call