Abstract
Purpose – The purpose of this paper is to investigate usage of fused deposition modeling (FDM)-based sheet metal tooling for small lot productions as a real case. FDM-based sheet metal tooling was used for stamping prototype parts for two different materials to evaluate dimensional conformance. Design/methodology/approach – The experimental process of data capture used the following steps: sheet metal parts were stamped and optically scanned at every 10th interval for both DC04 and S355MC material. FDM-based upper and lower dies were optically scanned at 1st, 51st and 101st intervals. Dimensional conformance analyses were carried out by using scanned data to evaluate the behavior of FDM dies against DC04 and S355MC materials in terms of geometric deviation. Findings – Satisfactory results were obtained for DC04 material by using FDM-based tooling, and overall deviation was at an acceptable level in terms of production tolerance. S355MC material is harder than DC04 and results were not convenient in terms of tolerance range. Geometric deviation of FDM dies was slightly increased and after the 50th part, increased drastically due to squeezing of FDM layers. Experiments showed that this method can be used for DC04 material and up to 100 parts can be stamped within the tolerance range. Using FDM-based sheet metal tooling, product development phase can be shortened in terms of leading time. Originality/value – This paper presents a study to create an alternative tooling method to shorten product cycle and product development phase by integrating rapid tooling methods to low-volume production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.