Abstract

BackgroundIn vascular surgery, novel synthetic prosthesis materials for patch-angioplasties, interpositions, bypasses and shunts are continuously under development and optimization. The characteristics of an ideal vascular prosthesis would display long-term patency, biocompatibility, durability, low porosity, lack of stich hole bleeding, ease of handling, kink resistance, infection resistance and reasonable costs. The aim of this study was to establish and report a reliable sheep model including potential pitfalls where those parameters could be analyzed. Before surgery, sheep were acclimatized for 4–8 weeks, during which parasite infections were treated and blood and serum parameters monitored. Twenty-four sheep underwent surgery, and carotid patch-angioplasties (n = 12), graft interpositions (n = 6) or arteriovenous prosthetic shunts (n = 6) were implanted. Half of the animals in each group were sacrificed after 2 weeks and the other half after 8 weeks. The implants were analyzed for patency, endothelialization, thrombogenicity and biocompatibility by clinical observation, blood flow measurement and pathological and histopathological (H&E, EvG) as well as immunohistochemical (Ki67, CD31) evaluations.ResultsHealth monitoring of the sheep revealed a parasitic burden with endoparasites in all animals. Some animals showed thereby infestations in the bile duct causing fibrotic cholangitis with calcifications in the liver. In addition, sarcosporidia were detected in histopathological specimen of the heart in all animals. Parasitic burden correlated with blood counts and serum bilirubin levels. Both were significantly reduced by albendazole treatment within the acclimatization time. Patches, interposition grafts, and straight shunts were successfully implanted bilaterally in all animals. The total average operation time was 136 ± 21 min. Most animals (23/24) showed good patency rates and general condition after implantation. Pathological and histopathological/immunohistochemical analyses were suitable to determine thrombogenicity, endothelialization, cellular/fibroblastic proliferation, biocompatibility, inflammatory cell infiltration, and thickness of neointima in the prosthesis material.ConclusionsWe have developed a suitable experimental protocol with standardized and successful anesthesia- and surgical-procedures for patch-angioplasty, graft interposition, and arteriovenous prosthetic shunts. This sheep model allows testing of new prosthetic materials for biocompatibility, thrombogenicity, and endothelialization.

Highlights

  • In vascular surgery, novel synthetic prosthesis materials for patch-angioplasties, interpositions, bypasses and shunts are continuously under development and optimization

  • In vascular surgery, synthetic prosthesis material is globally used for patch-angioplasties, interpositions, bypasses and straight shunts

  • The development of an optimal vascular prosthesis is a challenging issue in vascular surgery research [3]

Read more

Summary

Introduction

Novel synthetic prosthesis materials for patch-angioplasties, interpositions, bypasses and shunts are continuously under development and optimization. Synthetic prosthesis material is globally used for patch-angioplasties, interpositions, bypasses and straight shunts Such prosthesis material is required either when suitable autologous veins are not available or in order to save time during critical operations. Evaluation of new vascular prosthesis material in preclinical animal studies is required to assess biocompatibility, thrombogenicity, endothelialization as well as the capacity of the prosthesis to maintain a physiologic function in the circulatory system. It is a prerequisite for registration of a medical device, as demanded by the Food and Drug Administration (FDA) and European Medical Devices Directive (MDD)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.