Abstract

Initial velocity and isotope exchange studies confirmed that the over-all reaction, like that catalyzed by pyruvate carboxylase purified from rat liver and chicken liver, was a nonclassical Ping Pong Bi Bi Uni Uni sequence with ATP and HCO3-binding randomly in the Bi Bi partial reaction. Three possible mechanisms for the coupling of ATP hydrolysis and CO2 fixation are considered: (i) Mechanism i, a concerted mechanism without the formation of a kinetically significant or detectable intermediate; (ii) Mechanism ii, activation of the enzyme by ATP to form an activated phosphoenzyme complex which can react with HCO3- by formation of a phosphorylated intermediate. On the basis of other evidence, an activated intermediate containing the ADP moiety was considered improbable. Evidence is presented which indicates that an isotopic exchange between ATP and ADP in the absence of added orthophosphate is not a property of the sheep kidney enzyme. This observation removed the need to postulate either that this exchange is an abortive reaction, or that there is a compulsory formation of a phosphoenzyme intermediate. Two analogues of ADP, alpha,beta-methylene adenosine diphosphate, and adenosine 5'-phosphosulfate, have been used to provide further evidence against Mechanism ii. Both compounds were competitive inhibitors with respect to MgATP2- (Ki values respectively, 0.58 mM and 3.0 mM, compared with 0.17 mM for ADP), but neither could be phosphorylated by the enzyme. Neither analogue could replace ADP in the HCO3-: oxalacetate isotopic exchange reaction, indicating that phosphorylation of ADP is necessary for this exchange to occur, and that Mechanism ii is not applicable. Since Mechanism iii involves formation of a carbonly phosphate intermediate, analogues of this compound, namely, carbamyl phosphate and phosphonacetic acid were used to examine this pathway. The fact that the enzyme catalyzed the synthesis of ATP from ADP and carbamyl phosphate, and that phosphonacetic acid was a noncompetitive inhibitor with respect to MgATP2- (Ki = 0.5 mM) provides strong evidence that a carbonyl phosphate derivative is involved in the reaction mechanism. However, we have not found from initial velocity studies evidence for the formation of this intermediate, and it may therefore have only a transient existence in an essentially concerted reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call