Abstract

In microscopy studies of 19th‐century cement stone, we found free lime in the form of darkened spherical structures, as they were described in the literature already. When trying to determine their phase composition by Raman spectroscopy, we encountered contradictive assignments in literature spectra of the lime phases CaO, Ca(OH)2 and CaCO3 and observed strong spectral features that have been ignored or erroneously assigned so far. In this study we present Raman spectra of pure lime phases and of a naturally grown calcite crystal, burnt limestone (quick lime, mainly CaO), aged slaked lime putty (mainly Ca(OH)2), and carbonated lime putty (mainly CaCO3). Based on the results, we shed light mainly onto these two questions: (1) Does CaO have a Raman spectrum? (2) Which features in the spectra are luminescence bands that could be (and already have been) misinterpreted as Raman bands? We proof our assignment of luminescence bands in lime phases by using three different laser wavelengths for excitation, and give hypotheses on the origin of the luminescence as well as practical advices on how to identify these misleading features in Raman spectra. This article is mainly addressed to users of Raman spectroscopy in different fields of material analysis who might not be aware of the presence of interfering bands in their spectra. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.