Abstract
The photoredox activity of well-known RuII complexes stems from metal-to-ligand charge transfer (MLCT) excited states, in which a ligand-based electron can initiate chemical reductions and a metal-centered hole can trigger oxidations. CrIII polypyridines show similar photoredox properties, although they have fundamentally different electronic structures. Their photoactive excited state is of spin-flip nature, differing from the electronic ground state merely by a change of one electron spin, but with otherwise identical d-orbital occupancy. We find that the driving-force dependence for photoinduced electron transfer from 10 different donors to a spin-flip excited state of a CrIII complex is very similar to that for a RuII polypyridine, and thereby validate the concept of estimating the redox potential of d3 spin-flip excited states in analogous manner as for the MLCT states of d6 compounds. Building on this insight, we use our CrIII complex for photocatalytic reactions not previously explored with this compound class, including the aerobic bromination of methoxyaryls, oxygenation of 1,1,2,2-tetraphenylethylene, aerobic hydroxylation of arylboronic acids, and the vinylation of N-phenyl pyrrolidine. This work contributes to understanding the fundamental photochemical properties of first-row transition-metal complexes in comparison to well-explored precious-metal-based photocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.