Abstract

The Ni-catalyzed cross-coupling of aryl ethers is a powerful synthetic tool to transform widely available phenol derivatives into functionalized aromatic molecules. Recent theoretical and experimental mechanistic studies have identified the involvement of heterobimetallic nickelates as key intermediates that facilitate the challenging transformation under mild conditions and often without the need for external ligands or additives. In this work, based on calculations performed at the density functional theory (DFT) level and by comparison with spectroscopic and kinetic data, we investigate the mechanism of the Ni(COD)2-catalyzed cross-coupling of 2-methoxynaphthalene with PhLi and assess the speciation of lithium nickelate intermediates. The crucial role of solvent on the reaction is explained, and the multiple roles played by lithium are unveiled. Experimental studies have identified key lithium nickelate species which support and help to evolve the calculated reaction mechanism and ultimately complete the catalytic cycle. Based on this new mechanistic knowledge, a well-known experimental challenge of these transformations, the so-called "naphthalene problem" which restricts the use of electrophilic coupling partners to π-extended systems, can be addressed to enable the cross-coupling of unbiased aryl ethers under mild conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call