Abstract
AbstractAt the dynamic nexus of artificial intelligence and quantum technology, quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning. This development is set to revolutionize the applications of quantum computing. This article reviews the concept of QNNs and their physical realizations, particularly implementations based on quantum optics. The integration of quantum principles with classical neural network architectures is first examined to create QNNs. Some specific examples, such as the quantum perceptron, quantum convolutional neural networks, and quantum Boltzmann machines are discussed. Subsequently, the feasibility of implementing QNNs through photonics is analyzed. The key challenge here lies in achieving the required non‐linear gates, and measurement‐induced approaches, among others, seem promising. To unlock the computational potential of QNNs, addressing the challenge of scaling their complexity through quantum optics is crucial. Progress in controlling quantum states of light is continuously advancing the field. Additionally, it has been discovered that different QNN architectures can be unified through non‐Gaussian operations. This insight will aid in better understanding and developing more complex QNN circuits.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.