Abstract

Coronavirus disease 2019 (COVID-19) is a rapidly expanding global health crisis. A disintegrin and metalloproteinase 17 (ADAM17), an ectodomain sheddase, is a key component of ACE2 modulation and plays a complex role in inflammation and immunosurveillance. Much remains unknown regarding the immunopathogenesis of COVID-19, including how the virus affects ADAM17 expression, activity, and regulation. Three electronic databases (MEDLINE through PubMed, Embase through Ovid, and Google Scholar) were searched to identify articles relevant to ADAM17 and severe acute respiratory syndrome coronavirus 1 and 2. Relevant articles published from January 1, 2005, to April 30, 2020, were selected, and reference lists were screened and cross-referenced. We also searched preprint studies on medRxiv and bioRxiv given the rapidly evolving data on COVID-19 SARS-CoV-2. Infection with SARS-CoV-2 may lead to an increase in ADAM17 sheddase activity contributing to an exuberant macrophage-predominant inflammatory response and diminished immunosurveillance capacity for viral clearance. Emerging data suggest severe lung injury in COVID-19 is associated with higher levels of TNF-α and IL-6, T-cell lymphopenia and exhaustion, hypercoagulability, and a macrophage-predominant immune response. This clinical picture is consistent with dysregulation of many of the molecular pathways in which ADAM17 participates. Elucidation of the role of ADAM17 in COVID-19 may identify novel molecular targets for drug development and therapeutic repurposement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.