Abstract

Let M be an o-minimal structure or a p-adically closed field. Let be the space of complete n-types over M equipped with the following topology: The basic open sets of are of the form Ũ = {p ∈ Sn (M): U ∈ p} for U an open definable subset of Mn. is a spectral space. (For M = K a real closed field, is precisely the real spectrum of K[X1, …, Xn]; see [CR].) We will equip with a sheaf of LM-structures (where LM is a suitable language). Again for M a real closed field this corresponds to the structure sheaf on (see [S]). Our main point is that when Th(M) has definable Skolem functions, then if p ∈ , it follows that M(p), the definable ultrapower of M at p, can be factored through Mp, the stalk at p with respect to the above sheaf. This depends on the observation that if M ≺ N, a ∈ Nn and f is an M-definable (partial) function defined at a, then there is an open M-definable set U ⊂ Nn with a ∈ U, and a continuous M-definable function g:U → N such that g(a) = f(a).In the case that M is an o-minimal expansion of a real closed field (or M is a p-adically closed field), it turns out that M(p) can be recovered as the unique quotient of Mp which is an elementary extension of M.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.