Abstract
Fused-silica capillary columns of 200 μm inner diameter were packed with micropellicular, octadecylated, 2.3 μm poly(styrene–divinylbenzene) particles and applied to the separation of oligonucleotides by ion-pair reversed-phase high-performance liquid chromatography. Oligonucleotides were eluted at 50°C with gradients of 3–13% acetonitrile in 50 m M triethylammonium bicarbonate. Addition of sheath liquid to the column effluent allowed the detection of oligonucleotides by electrospray ionization mass spectrometry using full-scan data acquisition with a detectability comparable to that obtained with UV detection. The signal-to-noise ratios with different sheath liquids increased in the order isopropanol<methanol<acetonitrile. The incorporation of volatile acids or bases such as triethylamine or hexafluoroisopropanol into the sheath liquid was found to influence the charge state distribution of oligonucleotides longer than 20 nucleotide units whereas no significant effect was observed with shorter oligonucleotides. Organic acids and bases in the sheath liquid generally deteriorated the signal-to-noise ratios in the chromatograms and mass spectra mainly because of increased background noise. Only a few charge states were observed in the mass spectra of oligonucleotides because of charge state reduction due to the presence of carbonic acid in the eluent. With triethylammonium hydrogencarbonate as chromatographic eluent and acetonitrile as sheath liquid, very few cation adducts of oligonucleotides were observed in the mass spectra. However, the presence of small amounts of monopotassium adducts enabled the calculation of the charge state of multiply charged ions. With acetonitrile as sheath liquid, 710 amol of a 16-mer oligonucleotide were detected using selected ion monitoring data acquisition with a signal-to-noise ratio of 3:1. Finally, capillary ion-pair reversed-phase high-performance liquid chromatography–electrospray ionization mass spectrometry was applied to the separation and characterization of heterooligonucleotide primers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.