Abstract

Diabetic kidney disease (DKD) patients have a high risk of suffering from cardiovascular disease (CVD), placing a heavy cost on the public health system. In this study, we intended to develop and validate a shear-wave elastography (SWE)-based radiomics nomogram for predicting the development of CVD in DKD patients. This approach allows extensive use of the valuable information contained in ultrasound images, thus helping clinicians to identify CVD in DKD patients. Totally 337 and 145 patients constituted the training and validation cohorts, respectively. The radiomics features of the segmented kidney in ultrasound images were extracted and selected to generate the rad-score of each patient. These rad-score, as well as the predictors of risk of CVD occurrence from the clinical characteristics, were included in the multivariate analysis to develop a nomogram. It was further assessed in the training and validation cohorts. Patients with CVD accounted for 30.9% (104/337) in the training cohort and 31.0% (45/145) in the validation cohort. The rad-score was calculated for each patient using 6 features extracted from the ultrasound images. The radiomics nomogram was built with the rad-score, age, systolic blood pressure (SBP), low-density lipoprotein cholesterol (LDL-C). It was superior to the clinical nomogram developed without the rad-score and demonstrated promising discrimination, calibration, and clinical utility in both training and validation cohorts. We developed and validated an SWE-based radiomics nomogram to predict CVD risk in patients with DKD. The model was demonstrated to have a promising prediction performance, showing its potential to identify CVD in DKD patients and assist decision-making for appropriate early intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call