Abstract

Coarse-grained Langevin dynamics simulations were performed to investigate the alignment behavior of monolayer films of cylinder-forming diblock copolymers under steady shear, a structure of significant importance for many technical applications such as nanopatterning. The influences of shear conditions, the interactions involved in the films, and the initial morphology of the cylinder-forming phase were examined. Our results showed that above a critical shear rate, the cylinders can align either along the shearing direction or transverse (log-rolling) to the shearing direction depending on the relative strength between the interchain attraction in the cylinders (εAA) and the surface attraction of the confining walls with the film (εBW). To understand the underlying mechanism, the microscopic properties of the films under shear were systematically investigated. It was found that at low εAA/εBW, the majority blocks of the diblock polymer that are adsorbed on the confining walls prefer to move synchronously with the walls, inducing the cylinder-forming blocks to align along the flow direction. When εAA/εBW is above a threshold value, a strong attraction between the cylinder-forming blocks restrains their movement during shear, leading to the log-rolling motions of the cylinders. To predict the threshold εAA/εBW, we developed an approach based on equilibrium thermodynamics data and found good agreement with our shear simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.