Abstract

A scenario for the yielding of granular matter is presented by considering the ensemble of force networks for a given contact network and applied shear stress tau. As tau is increased, the probability distribution of contact forces becomes highly anisotropic, the difference between average contact forces along minor and major axes grows, and the allowed networks span a shrinking subspace of all force networks. Eventually, contacts start to break, and at the maximal shear stress the packing becomes effectively isostatic. The size of the allowed subspace exhibits simple scaling properties, which lead to a prediction for the yield stress for packings of an arbitrary contact number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call