Abstract

The Alpine Oligocene plutons are spatially and temporally associated with the activity of the Periadriatic Fault System (PFS), an orogen‐parallel, crustal‐scale transpressive mylonitic belt. Excellent three‐dimensional exposure, combined with a wealth of structural, seismic, petrological, geochronological, geochemical, and paleomagnetic data collected over the last decades help to constrain the relationships between deformation, ascent, and emplacement of the plutons. Magmas were channeled from the base of the thickened continental crust into the narrow mylonitic belt of the Periadriatic Fault System, which was used as ascent pathway to cover vertical lengths of 20 to 40 km. Therefore the linear alignment of the plutons at the surface is not the expression of a linear source region at depth. Ascent of the melts is controlled by the mylonitic foliation of the PFS, which forms the only steep anisotropy, continuously traversing the entire Alpine crust. In contrast, the flow direction is not influenced by the specific kinematics of the faults. Final emplacement of the plutons occurred by extrusion from the Periadriatic Fault System into the adjacent country rocks. The transition from ascent to final emplacement is favored by partitioning of transpressive deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.