Abstract

Mylonites derived largely from granite, pegmatite and sedimentary quartzite occupy a 500 m thick, gently N-dipping zone along the northern flank of the Coyote Mountains, west of Tucson, in southeastern Arizona. The quartzite mylonites are exceptionally well developed and occur as discrete layers and lenses, 2–5 m thick, within yet thicker, boudinaged, sill-like lenses of mylonitic pegmatite. Mylonitization took place in the Tertiary within a normal-slip ductile shear zone. The shear zones formed in response to regional extension of continental crust. Extension is along a north-south line, and N-directed sense of shear is revealed by mica fish, oblique foliations in dynamically recrystallized quartz aggregates, and asymmetric quartz c-axis fabrics. The microstructures and c-axis fabrics, taken together, disclose that ductile and brittle deformation was achieved by intense, penetrative, non-coaxial laminar flow dominated by progressive simple shear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.