Abstract
ABSTRACTThis paper studies shear wave propagation in magneto-elastic transversely isotropic material, sandwiched between a layer and a half-space of heterogeneous elastic materials. Elastic constants of the layer and half-space are assumed to vary in a parabolic form with depth. Whittaker’s functions and variable separable techniques have been employed to calculate the interior deformations; consequently, we obtain a general dispersion relation for shear wave. Effects of various affecting parameters on phase velocity of shear wave are considered through some numerical examples. In addition, a comparative study has been carried out for three examples of sandwiched layer, namely Beryl, Magnesium and isotropic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.