Abstract

ABSTRACTThis paper studies shear wave propagation in magneto-elastic transversely isotropic material, sandwiched between a layer and a half-space of heterogeneous elastic materials. Elastic constants of the layer and half-space are assumed to vary in a parabolic form with depth. Whittaker’s functions and variable separable techniques have been employed to calculate the interior deformations; consequently, we obtain a general dispersion relation for shear wave. Effects of various affecting parameters on phase velocity of shear wave are considered through some numerical examples. In addition, a comparative study has been carried out for three examples of sandwiched layer, namely Beryl, Magnesium and isotropic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call