Abstract
The nondestructive spectral analysis of surface waves (SASW) technique determines the shear wave velocities along the wide wavelength range using Rayleigh-type surface waves that propagate along pairs of receivers on the surface. The typical configuration of source-receivers consists of a vertical source and three vertical receivers arranged in a linear array. While this approach allows for effective site characterization, laterally variable sites are often challenging to characterize. In addition, in a traditional SASW test configuration system, where sources are placed in one direction, the data are collected more on one side, which can cause an imbalance in the interpretation of the data. Data interpretation issues can be resolved by moving the source to opposite ends of the original array and relocating receivers to perform a second complete set of tests. Consequently, two different Vs profiles can be provided with only a small amount of additional time at sites where lateral variability exists. Furthermore, the testing procedure can be modified to enhance the site characterization during data collection. The advantages of performing SASW testing in both directions are discussed using a real case study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.