Abstract

Electromechanical resonators are sensitive to the properties of the surrounding medium due to interaction forces onto the surface caused by motions in the medium. In the present contribution, fully metallic Lorentz force resonators exhibiting in-plane oscillation are used to excite shear waves to measure the linear viscoelastic storage and loss-moduli at specific frequencies in the kHz range of complex fluids (e.g. aqueous polymeric solutions). Reflected shear waves in a well defined gap are employed to extend the measurement range as well as the capability to measure at multiple frequencies. Numerical methods and reduced order models are employed to solve for the velocity field and interaction forces to determine the required quantities from the measured frequency response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.