Abstract

Shear wave velocity is a fundamental property of a granular assembly. It is a measure of the true elastic stiffness of a bulk specimen of discrete grains. Shear wave velocity is typically measured in the laboratory (e.g., using bender elements) or in-situ (e.g., using a seismic cone penetrometer, sCPT). In the current work, shear wave propagation is modeled numerically using the discrete element method (DEM). First, an appropriate method for measuring wave velocity is identified. Then the effects of particle size and elastic properties are investigated. Specimen fabric is then quantified before and after wave excitation and the elasticity of the response at the scale of the particle contacts is investigated. The results show that shear wave velocity may be robustly measured for discrete numerical specimens. The ability to measure shear wave velocity using DEM simulations may provide another tool for researchers seeking to link results from physical and numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.