Abstract

Abstract Nonlinear phononic materials enable superior wave responses by combining nonlinearity with their inherent periodicity, creating opportunities for the development of novel acoustic devices. However, the field has largely focused on reversible nonlinearities, whereas the role of hysteretic nonlinearity remains unexplored. In this work, we investigate nonlinear shear wave responses arising from the hysteretic nonlinearity of frictional rough contacts, and harness these responses to enable programmable functions. By using a numerical approach, we solve the strongly nonlinear problem of shear wave propagation through a single contact and a periodic array of contacts, accounting for frictional effects. Specifically, the Jenkin friction model with experimentally obtained properties is used to capture the effects of stick–slip transition at the contacts. Results show that friction gives rise to shear-polarized eigenstrains, which are residual static deformations within the system. We then demonstrate how eigenstrain generation in multiple contacts can enable programmable functionalities such as an acoustically controlled mechanical switch, precision position control, and surface reconfigurability. Overall, our findings open new avenues for designing smart materials and devices with advanced functionalities via acoustic waves using the hysteretic nonlinearity of frictional contacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call