Abstract

PurposeThe purpose of this study was to evaluate how the anisotropy and the static stretch stress of the cervical musculature influence the measured shear modulus in a tissue-mimicking phantom and in cervical lymph nodes in vivo by using shear wave elastography (SWE).MethodsSWE was performed on a phantom using a pig muscle and on the middle jugular cervical lymph nodes in six volunteers. Tissue elasticity was quantified using the shear modulus and a supersonic shear wave imaging technique. For the phantom study, first, the optimal depth for measurement was determined, and then, SWE was performed in parallel and perpendicular to the muscle fiber orientation with and without strain stress. For the in vivo study, SWE was performed on the cervical lymph nodes in parallel and perpendicular to the sternocleidomastoid muscle fiber direction with and without neck stretching. The mean values of the shear modulus (meanSM) were then analyzed.ResultsIn the phantom study, the measured depth significantly influenced the meanSM with a sharp decrease at the depth of 1.5 cm (P<0.001). Strain stress increased the meanSM, irrespective of the muscle fiber orientation (P<0.001). In the in vivo study, the meanSM values obtained in parallel to the muscle fiber orientation were greater than those obtained perpendicular to the fiber orientation, irrespective of the stretch stress (P<0.001). However, meanSM was affected significantly by the stretch stress parallel to the muscle fiber orientation (P<0.001).ConclusionThe anisotropic nature of the cervical musculature and the applied stretch stress explain the variability of the SWE measurements and should be identified before applying SWE for the interpretation of the measured shear modulus values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call