Abstract

Since the mode of failure of resin composites bonded to ceramics has frequently been reported to be cohesive fracture of either ceramic or resin composite rather than separation at the adhesive interface, this study was designed to question the validity of shear bond strength tests. The reasons for such a failure mode are identified and an alternative tensile bond strength test evaluated. Three configurations (A, conventional; B, reversed; and C, all composite) of the cylinder-on-disc design were produced for shear bond strength testing. Two-dimensional finite element stress analysis (FEA) was carried out to determine qualitatively the stress distribution for the three configurations. A tensile bond strength test was designed and used to evaluate two ceramic repair systems, one using hydrofluoric acid (HF) and the other acidulated phosphate fluoride (APF). Results from the shear bond strength tests and FEA showed that this particular test has as its inherent feature the measurement of the strength of the base material rather than the strength of the adhesive interface. In the tensile test, failure invariably occurred in the adhesive layer, with HF and APF showing a similar ability to improve the bond of resin composite to ceramic. It is concluded that the tensile bond strength test is more appropriate for evaluating the adhesive capabilities of resin composites to ceramics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.