Abstract

The shear viscosity of hot nuclear matter is investigated by using the mean free path method within the framework of IQMD model. Finite size nuclear sources at different density and temperature are initialized based on the Fermi-Dirac distribution. The results show that shear viscosity to entropy density ratio decreases with the increase of temperature and tends toward a constant value for $\rho\sim\rho_0$, which is consistent with the previous studies on nuclear matter formed during heavy-ion collisions. At $\rho\sim\frac{1}{2}\rho_0$, a minimum of $\eta/s$ is seen at around $T=10$ MeV and a maximum of the multiplicity of intermediate mass fragment ($M_{\text{IMF}}$) is also observed at the same temperature which is an indication of the liquid-gas phase transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.