Abstract

The results of modeling shear flows in classical two-dimensional (2D) dipole systems are presented. We used the method of nonequilibrium molecular dynamics to calculate the viscosity at various shear rates. The coefficients of shear viscosity are given in the limit of low shear rates for various regimes of interparticle correlation from a weakly correlated gaseous state to a strongly nonideal liquid state near the crystallization point. The calculations were carried out for bare (unscreened) dipole systems, as well as for dipole systems in a polarizable medium that provide screening of the dipole-dipole interaction. The effect of shear thinning in 2D dipole systems is reported for low values of the coupling parameter. In addition, it is shown that dipole systems can become both less and more viscous due to the presence of a screening medium, depending on the degree of interparticle correlation. The optimal simulation parameters are discussed within the framework of the method of nonequilibrium molecular dynamics for determining the shear viscosity of two-dimensional dipole systems. Moreover, we present a simple fitting curve which provides a universal scaling law for both bare dipole-dipole interaction and screened dipole-dipole interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call